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Abstract

Experimental and computational studies suggest that complex motor behavior is based
on simpler spatio-temporal primitives. This has been demonstrated by application of dimen-
sionality reduction techniques to signals from electrophysiological and EMG recordings during
execution of limb movements. However, the existence of such primitives on the level of the tra-
jectories of complex human full-body movements remains less explored. Known blind source
separation techniques, like PCA and ICA, tend to extract large numbers of components from
such trajectories, which are difficult to interpret. For the analysis of emotional human gait
patterns, we present a new non-linear source separation technique, realizing a more appro-
priate modeling of temporal delays. The proposed method allows the accurate modeling of
high-dimensional movement trajectories with very few source components, and is significantly
more accurate than other techniques. Combining this method with sparse regression, we iden-
tified primitives for the encoding of individual emotions in gait that match features that are
important for the perception of emotional body expressions in psychological studies. This
suggests the existence of emotion-specific motor primitives in human gait.

For the analysis of electrophysiological and EMG data known blind source separation techniques
like PCA or ICA have been successfully applied for the extraction of basic motor components
(e.g.1,2). These studies support the hypothesis of the existence of a limited set of movement
primitives, which forms the basis for the realization of more complex motor behaviors.
In our study we tried to exploit similar unsupervised learning techniques for the identification
of movement primitives that are relevant for the expression of emotions in gait. Psychophysical
studies suggest that the perception of emotions in gait might be based on specific emotion-specific
dynamic features. We demonstrate that such features can be learned immediately from kinematic
data.
Common source separation techniques typically require relatively large numbers of sources in or-
der to appropriately approximate complex trajectories. The number of sources can be drastically
reduced without a loss of approximation quality if temporal delays between the trajectories of dif-
ferent degrees of freedom are taken into account. We have developed a new blind source separation
algorithm which allows a suitable modeling of such time delays. Related existing techniques require
non positive sources, necessitate additional sparseness assumptions3, or do not allow a dimension
reduction5.

Trajectory data: Movement trajectories were recorded from four lay actors executing walking
with four basic emotional expressions (happy, angry, sad and fear) and neutral walking using a
VICON motion capture system. Using a kinematic body model with 17 joints, we computed joint
angles from the marker positions. As data for the unsupervised learning procedure we used only
the flexion angles of the hip, knee, elbow, shoulder and the clavicle, since these showed the most
reproducible variation.

Blind source separation: We have compared different methods for blind source separation
for our data set: PCA, fast ICA and bayesian ICA with a positivity constraint for the elements
of the mixing matrix4. These method required at least 5 sources for an accurate reconstruction
(unexplained variance smaller than 90 %) of the original trajectories.
We also analyzed the data on a joint-by-joint basis, performing separate ICA’s for the individual
joints. Computing the autocorrelation functions between the sources, we found that the sources
extracted from separate joints were extremely similar in terms of their shapes, but differed from
each other by time delays. This motivated the development a new algorithm that allows for an
appropriate modeling of this inherent structure of the data.



Signifying by xi the i-th component of the approximated trajectory and by sj the j-th unknown
source signal, the data is modeled by the following nonlinear generative model:

xi(t) =

nX
j=1

αijsj(t − τij) (1)

The model is specified by the linear mixing coefficients αij and the time τij delays between source
signals and trajectory components. The problem of blind source separation with time delays has
only been rarely been treated in the literature (e.g.3,5,6).
An efficient algorithm for the solution of this problem that scales up to high-dimensional prob-
lems was obtained by transforming the signals in time-frequency domain using the Wigner-Ville
transform, that is defined by
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Applying this integral transformation to equation (1) one obtains:
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The last equality sign above is due to the (approximate) independence of the sources. With the
additional assumption that the data coincides with the mean of its distribution (xj ≈ E(xj)) one
can compute the first and the zeros order moment from equation (2) resulting in the two equations:
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Here F denotes the Fourier transform. From these equations the unknowns can be estimated. To
recover the unknown sources sj , mixing coefficients αij and time delays τij we used the following
two step algorithm:

1. First, equation (3) is solved using non-negative ICA7. (This step could also be realized
exploiting non-negative matrix factorization.)

2. Iteration of the following two steps:

(a) Equation (4) is solved numerically for ∂
∂ω arg{Fsj}, and by integration Fsj is obtained

with initialization τij = 0.
(b) The mixing matrix and the delays are obtained by solving the following optimization

problem (with S(~τj) = (sk(ti − τjk))i,k, A = (αij)ij):

[ b~τj , bA] = argmin
[ ~τj ,A]

‖xj − A · S(~τj)‖

This minimization is accomplished following8, assuming uncorrelatedness for the sources
and independence of the time delays.

To construct a mapping between the linear weights A and the emotional expression we considered
the following multi-linear regression model

aj ≈ a0 + C · ej

where a0 is a vector with the weights for neutral walking, and aj the weight vector for emotion
j. ej is the j-th unit vector. The columns of the matrix C encode the deviations in weight space
between emotion j and neutral walking. To obtain sparsified solutions for this matrix, we solved
the regression problem by minimizing the following cost function (with γ > 0):

E(C) =
X

j

‖aj − a0 + C · ej‖2 + γ
X
ij

|Cij |



Results and Discussion We have compared several blind source separation methods including
PCA, fast ICA and our new method. In addition, we tested two methods with a positivity con-
straint for the elements of the mixing matrix. The first was a probabilistic ICA7 and the second
our algorithm with the additional constraint αij ≥ 0.
The results for this comparison are shown in Figure 1 where the approximation accuracy is plotted
against the corresponding number of sources. The comparison between the tested algorithms re-
veals that methods (PCA and ICA) with purely linear superposition of the source signals, without
specific treatment of time delays, result in approximations with limited accuracy, explaining about
90% of the variance of the data with 5 sources.

Figure 1: Comparison of different blind source
separation algorithms. Explained variance is
shown for different numbers of extracted sources.

Figure 2: Elements of the weight matrix C, en-
coding emotion-specific deviations from neutral
walking, for different degrees of freedom. Num-
bers indicate references describing psychophys-
ical experiments that have reported the same
critical components for visual emotion recogni-
tion.

The proposed new algorithm reaches the same
level of accuracy with only two sources. Superpo-
sitions with more than two sources approximate
the data almost perfectly, explaining more than
97% of the variance. The inclusion of a positivity
constraint for the weights in the new algorithm
did not change the results very much. For an
additional verification of our results, we used
the approximated trajectories for the animation
of an avatar with 13 segments and 10 joints.
Animations with trajectories based on 3 sources
with the proposed method look very natural.

To test whether our algorithm extracts com-
ponents that are biologically meaningful, we
compared the elements of the regression matrix
C with results from psychophysical experiments
on the perception of emotional gaits. These
experiments show that the perception depends
on specific changes of individual degrees of free-
dom relative to the pattern of neutral walking.
We found excellent consistency between the
features extracted by our learning algorithm and
features reported in these behavioral studies,
e.g. increased step length for angry walking, or
decreased movements for sad walking. The num-
bers in Fig. 2 indicate the features and references
of behavioral recognition studies that reported
consistent features. The only one feature that
has not been reported in these psychological
experiments was an decreased flexion of the knee
angles for angry walking (∗ ∗ ∗ in Figure 2).

We conclude that the proposed new method accomplishes more accurate approximations of emo-
tional gait trajectories with fewer sources than other common blind source separation techniques.
In addition, we have shown that the learned sparsified model for emotional gaits extracts features
that match components that are important for the visual perception of emotional walks. Our re-
sults provide evidence for the existence of emotion-specific movement primitives, and suggest that
spatio-temporal features that are critical for the visual perception of emotional body expressions
match highly informative components of the relevant motor patterns.
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